详细解释:
一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。一种是随机效应模型(Random Effects Regression Model)。如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。 在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。 检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归: 在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。估计方法采用PCSE(Panel Corrected Standard Errors,面板校正标准误)方法。Beck和Katz(1995)引入的PCSE估计方法是面板数据模型估计方法的一个创新,可以有效的处理复杂的面板误差结构,如同步相关,异方差,序列相关等,在样本量不够大时尤为有用。
|