您现在的位置:生物医药大词典 >> 分子生物学专业词典
    分子生物学词典      首页 上一页 当前页 1  2  3  4  5  6  7  8  9  10  20  30  40  50  60
    分享到:

  • 在转基因实验中,其调控作用可使基因表达对整合位点不敏感,而仅仅取决于转基因的拷贝数,如见于珠蛋白基因
  • 蛋白基因组学(Proteogenomics)利用蛋白质组学数据,尤其是高精度的串联质谱数据, 结合基因组和转录组数据对基因组进行注释。蛋白质组数据不仅可以实现对基因组序列的重新注释、发现新基因,还能系统发现蛋白质特有的翻译后事件(如翻译后修饰和信号肽等)。随着基于串联质谱技术的蛋白质组学的快速发展,蛋白基因组学已成为功能基因组学研究不可或缺的重要工具。

  • CRISPR简介

    CRISPR(Clustered regularly interspaced short palindromic repeats),被称为规律成簇间隔短回文重复,实际上就是一种基因编辑器,是细菌用以保护自身对抗病毒的一个系统,也是一种对付攻击者的基因武器。后来,研究人员发现,它似乎是一种精确的万能基因武器,可以用来删除、添加、激活或抑制其他生物体的目标基因,这些目标基因包括人、老鼠、斑马鱼、细菌、果蝇、酵母、线虫和农作物细胞内的基因,这也意味着基因编辑器是一种可以广泛使用的生物技术。


    CRISPR/Cas9基因编辑器及其原理简介



    CRISPR担当细菌的防护罩

    CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,其序列由一个前导区(Leader)、多个短而高度保守的重复序列区(Repeat)和多个间隔区(Spacer)组成。前导区一般位于CRISPR簇上游,是富含AT长度为300~500bp的区域,被认为可能是CRISPR簇的启动子序列。重复序列区长度为21~48bp,含有回文序列,可形成发卡结构。重复序列之间被长度为26~72bp的间隔区隔开。Spacer区域由俘获的外源DNA组成,类似免疫记忆,当含有同样序列的外源DNA入侵时,可被细菌机体识别,并进行剪切使之表达沉默,达到保护自身安全的目的。

    通过对CRISPR簇的侧翼序列分析发现,在其附近存在一个多态性家族基因。该家族编码的蛋白质均含有可与核酸发生作用的功能域(具有核酸酶、解旋酶、整合酶和聚合酶等活性),并且与CRISPR区域共同发挥作用,因此被命名为CRISPR关联基因(CRISPR associated),缩写为Cas。目前发现的Cas包括Cas1~Cas10等多种类型。Cas基因与CRISPR共同进化,共同构成一个高度保守的系统。


    CRISPR基因组定位



    CRISPR的工作原理

    当细菌抵御噬菌体等外源DNA入侵时,在前导区的调控下,CRISPR被转录为长的RNA前体(Pre RISPR RNA,pre-crRNA),然后加工成一系列短的含有保守重复序列和间隔区的成熟crRNA,最终识别并结合到与其互补的外源DNA序列上发挥剪切作用。

    目前发现的CRISPR/Cas系统有三种不同类型即I型、II型和III型,它们存在于大约40已测序的真细菌和90已测序的古细菌中。其中II型的组成较为简单,以Cas9蛋白以及向导RNA(gRNA)为核心组成,也是目前研究中最深入的类型。

    在II型系统中pre-crRNA的加工由Cas家族中的Cas9单独参与。Cas9含有在氨基末端的RuvC和蛋白质中部的HNH2个独特的活性位点,在crRNA成熟和双链DNA剪切中发挥作用。此外,pre-crRNA转录的同时,与其重复序列互补的反式激活crRNA(Trans-activating crRNA,tracrRNA)也转录出来,并且激发Cas9和双链RNA特异性RNase III核酸酶对pre-crRNA进行加工。加工成熟后,crRNA、tracrRNA和Cas9组成复合体,识别并结合于crRNA互补的序列,然后解开DNA双链,形成R-loop,使crRNA与互补链杂交,另一条链保持游离的单链状态,然后由Cas9中的HNH活性位点剪切crRNA的互补DNA链,RuvC活性位点剪切非互补链,最终引入DNA双链断裂(DSB)。CRISPR/Cas9的剪切位点位于crRNA互补序列下游邻近的PAM区(Protospacer Adjacent Motif)的5‘‘-GG-N18-NGG-3‘‘特征区域中的NGG位点,而这种特征的序列在每128bp的随机DNA序列中就重复出现一次。研究结果表明,Cas9还可以剪切线性和超螺旋的质粒,其剪切效率堪比限制性内切酶。

    CRISPR作用原理



    由于crRNA参与并且起到精确导向的作用,所以CRISPR/Cas9打靶系统也被称为RNA导向(RNA guided)打靶系统。
  • 缩略语:SKP2
  • 是遗传算法中参数代沟(Generation gap)一种结果
  • 当基因转入破坏生物体基因组内某个基因后,观察由此引起的表型变化,同样也可认识基因的功能,这是基因剔除(gene knock-out)。基因剔除是用DNA重组技术剔除或破坏生物体基因组内某一特定基因,而后观察由此引起的表型改变。这样,可以了解该基因的生物学功能。现以小鼠为例,先将待剔除的基因制成缺失突变型,在缺失的位置上插入一个选择基因如新霉素抗性基因(neo),同时再接上另一个选择基因如胸苷激酶基因(tk)。将这一段带有已失去原有功能的待剔除基因的DNA片段装在载体上,转入在体外培养的小鼠胚胎干细胞(embryonic stem cells,ES cells)。在细胞内,通过同源重组将基因组里有功能的待剔除基因置换掉,也就是被剔除了。因为转入的外源DNA片段只有通过同源重组整合进基因组时,方能把片段上连接在待剔除基因旁边的选择基因丢掉。非同源重组也就是随机整合,则会把整个外源DNA片段包括已失去功能的待剔除基因序列和两个选择基因,全部插入ES细胞的基因组。此时,在体外培养ES细胞时,在培养液里加入针对两个选择基因的适当的化学物质,就可使随机整合(此时整个外源DNA包括neo和tk基因都被整合)而仍保留着待剔除基因的ES细胞被选择性地杀死;只有发生了同源重组(此时,tk基因不被整合)使待剔除基因被置换或剔除掉的ES细胞,方能选择性地存活下来。然后将这些存活的ES细胞注射进小鼠早期胚胎。由于ES细胞是二倍体细胞,所以已经剔除了待剔除基因的ES细胞是该基因的杂合子,也就是ES细胞的一对同源染色体中只有一条染色体上的等位基因被剔除了。所以这种ES细胞注入小鼠胚胎后产下的小鼠也是该基因的缺失杂合体,需要把同是该基因缺失杂合体的雌雄小鼠交配,从子代中选出该基因缺失的纯合体,其概率为四分之一。这些缺失纯合小鼠可用于研究鉴定被剔除基因的生物功能。

  •   首页 上一页 当前页 1  2  3  4  5  6  7  8  9  10  20  30  40
 加入生词本
你知道它的英文吗?
你知道中文意思吗?
热门分类
历史查询


成为编辑 - 词典APP下载 - 关于 - 推荐 - 手机词典 - 隐私 - 版权 -链接 - 联系 - 帮助
©2008-2012 生物医药大词典- 自2008年3月1日开始服务 生物谷www.bioon.com团队研发
沪ICP备14018916号-1